The CHIR Algorithm: A Generalization for Multiple-Output and Multilayered Networks

نویسنده

  • Tal Grossman
چکیده

A new learning algorithm, learning by choice of int ern al repr esentations (CHIR), was recently int roduced. Th e basic version of thi s algoriths was developed for a two-layer, single-out put , feedforward network of binary neurons . This paper presents a generalized version of the CHIR algorithm th at is capable of t raining mult ipleoutput net works. A way to ada pt the algorit hm to mult ilayered feedforward networks is also presented. 'vVe test the new version on two typical learning tas ks: the combined paritysymmet ry problem and t he random problem (random associat ions). The dependence of the algori th m performance on the network size and on the learning parameters is st udied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی و آموزش شبکه‏ های عصبی مصنوعی به وسیله استراتژی تکاملی با جمعیت‏ های موازی

Application of artificial neural networks (ANN) in areas such as classification of images and audio signals shows the ability of this artificial intelligence technique for solving practical problems. Construction and training of ANNs is usually a time-consuming and hard process. A suitable neural model must be able to learn the training data and also have the generalization ability. In this pap...

متن کامل

Optimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm

  This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Generalization of Decomposed Integration Methods for Cost Effective Heat Exchanger Networks with Multiple Cost Laws

At many circumstances, in heat exchange processes several exchangers were used with different cost laws due to their pressure ratings, materials of construction and exchange3r types. In such circumstances traditional methods of pinch technology can not be led to minimum total annual cost may cause some other disadvantages like more complexity or higher maintenance. In this research work a n...

متن کامل

An Intelligent Algorithm based Controller for Multiple Output DC-DC Converters with Voltage Mode Weighting Factor

Multiple output DC-DC converters are widely used in many applications such as aerospace, industrial and medical equipments. The purpose of this paper is to present an intelligent control system for the multiple output DC-DC converters. In order to perform this purpose, a double ended forward DC-DC converter with three output voltages (+5 V/ 50W, +15 V/ 45W and -15 V/ 15W) is considered and anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Complex Systems

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1989